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Analysis of Internal Loading at Multiple Robotic Systems 
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When multiple robotics systems with several sub-chains grasp a common object, the inherent 
force redundancy provides a chance of utilizing internal loading. Analysis of grasping space 
based internal loading is proposed in this work since this method facilitates understanding the 
physical meaning of internal Ioadings in some applications, as compared to usual operational 
space based approach. Investigation of the internal loading for a triple manipulator has been few 
as compared to a dual manipulator. In this paper, types of the internal loading for dual and 
triple manipulator systems are investigated by using the reduced row echelon method to analyze 
the null space of those systems. No internal loading condition is derived and several load distri- 
bution schemes are compared through simulation. Furthermore, it is shown that the proposed 
scheme based on grasping space is applicable to analysis of special cases such as three-fingered 
and three-legged robots having a point contact with the grasped object or ground. 
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1. Introduction 

Analysis of an internal loading at multiple 
robotic systems has been a hot research area. 
Albert et al. (1988) proposed an weighting matrix 
in order to minimize unwanted moment at the 
grasping space. Kumar et a1.(1988) defined the 
internal loading as an interaction force at the 
walking vehicle and the multi-fingered robot, and 
proposed no interaction force condition. Lipkin 
et a1.(1991) defined the physical meaning of in- 
ternal loading using the concept of wrench and 
twist. Nakamura et a1.(1987) defined an internal 
loading using virtual work principle and opti- 
mized the internal loading using the condition of 
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the static friction constraint. Cheng et a1.(1991) 
addressed configuration of two closed chains at 
the multiple robotics system and force balance at 
the contact point. Uchiyama et a!.(1988) showed 
the type of the internal loading for the two-arm. 
Nahon et a1.(1992) used the weighting matrix in 
order to unify the units of force and moment at 
the algorithm minimizing the internal loading. He 
also minimized internal loading using quadratic 
form and two constraint conditions. Choi et al. 
(1995) proposed minimized constraint condition 
by a quadratic form and optimized force distri- 
bution using a minimized internal loading, but 
does not describe type of the exact internal load- 
ing. Zuo et a1.(1999) addressed the difference be- 
tween an internal force and an interaction force. 
So, the internal force consists of  the interaction 
and a parallel force at the contact point. Kerr 
et a1.(1989) described the internal force as the 
grasping force at the multi-fingered hands and 
proposed optimal selection of an internal grasp 
force using linear programming. Walker et al. 
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(1989) proposed a weighted pseudo-inverse so- 
lution that removes an internal loading in partic- 
ular solution. Yoshikawa et a1.(1987, 1999) de- 
fined a grasping force that is the internal force 
satisfying the friction constraint and manipulating 
force, and also proposed an virtual truss as a 
model of the object grasped at n contact points. 
Li et al. (2003) proposed an algorithm for three- 
finger force-closure grasp. 

Based on literature survey, the internal loading 
in multiple arms has been analyzed using the 
operational space approach except few cases. 
However, the notion of internal loading defined 
in the operational space is not visible, because it 
is explained at a single operational position. This 
paper claims that in some application, grasping 
space approach has advant~e to represent the 
physical meaning of internal loading, in compar- 
ison to operational space approach. One example 
is the case of an elastic object that is grasped by 
many robots. Another case is the multi-fingered 
hands or walking machine, in which the interac- 
tion load between two adjacent fingers or legs can 
be interpreted as an example of grasping force. 

Linear algebraically, it is known that the par- 
ticular solution corresponding to the motion part 
does not create any internal loading, and only the 
homogeneous part has something to do with in- 
ternal loading. The Walker's algorithm (Walker, 
1989), defined in the operational space, claims 
that the internal loading also exists in the panic- 
ular solution in multiple arm operation. And thus 
they proposed a way to eliminate a probable 
internal loading in the particular solution. This 
paper shows that the typical pseudo-inverse solu- 
tion does not in fact create any internal loading. 
On the other band, the weighted pseudo-inverse 
solution proposed by Walker actually created 
internal loading. This ~act was shown through a 
simple example. 

In this paper, we attempt to analyze the internal 
loading at multiple robotic systems by using 
reduced row echelon method and show the shape 
of the basis of the internal loading. Grasping 
space based analysis will be performed to provide 
better physical meaning of the internal loading. 
Secondly, we derive the condition of no internal 

loading and compare the internal loading defined 
at the operational space with that defined at the 
grasping space for dual and triple robotic sys- 
tems. Lastly, using the same methodology, three- 
fingered and three-legged systems are illustrated 
as special cases. 

2. Concept and Type 
of Internal Loading 

2.1 Concept of the internal loading 
An invisible force and moment are exerted on 

the grasped object by each manipulator at the 
multiple robotic systems. In this paper, we define 
the internal loading as the forces and moments 
that does not affect the motion of the end-effec- 
tot. The relation between the total forces ( .f)/  
moments (m) at the grasping space (F)  with n 
number of manipulators and forces/moments at 
the operational space (._P_P) can be described as 

P = G F  (1) 

where 

P___= [/~ fy f~ mx m,  m~] r (2) 

_.?-- [ F (  F~ L F_[] r (3) 

with 

E,---[A,/,~. A, m~ m,~ ,m,] ~ 
for i=1 ,  2, --., n 

(4) 

and the transformation matrix can be expressed as 

G=[Z~ o I~ o ... A o] (5) 
L S, l~ Sz I3 ." S,, I3 J 

with skew symmetric matrix 

I 0 --rz, ry, 1 
Sl---- rz, 0 -- j 

L-- ry, rx, 0 x' 

(6) 

for the position vector of the end-effeetor of the 
i-th manipulator. ~ff i [ rx ,  ry, rz,] r, and 3 by 3 
identity matrix, it3, respectively. 

I Grasping space imp~ics the space where manipulators 
grasp an object, and operational space impbes the output 
apace. 



1556 Jae Heon Chung, Byung-Ju Yi and Whee Kuk Kim 

The general solution of Eq. (1) can be ex- 
pressed as 

F =  G~,P+ ( I -  G~, G)_e (7) 

where, when G is row full-rank, the weighted 
pseudo-inverse with weighting matrix, IV, can be 
expressed as 

G~,= W-IGr  ( G W - I G r  ) -t (8) 

and e denotes an arbitrary vector. Doty et al. 
(1993) addressed the weighted pseudo-inverse for 
more general cases. The first term on the right- 
hand side of Eq. (7) represents a particular solu- 
tion, and the second term denotes a homogenous 
solution that creates internal loading without 
affecting the motion involved in the particular 
solution. 

When we map the force and moment fi'om the 
grasping space to the operational (or object) 
space, Walker et a1.(1989) claimed that the par- 
ticular solution has additional internal loading at 
the operational space. Based on his observation, 
he proposed no squeezing weighted pseudo-in- 
verse that removed an internal loading at the 
operational space. 

Suppose that ___~i denotes the effective forces 
and moments of the i-th manipulator at the 
operational space. Then, the transformation is 
gi~,en by 

~ , = C , F ,  (9) 

where the effective transformation matrix for i-th 
manipulator is given by 

- k 0  
G , = [  S, lsl (10) 

Let 

A= 

o kI3 
kI3 0 

0 kI~ 
kI3 0 

0 
0 kI3 

kI3 0 

( l l)  

where A E ~  6'*×en and k is non-zero scalar. Wher~ 
W=A,  G~* in Eq. (8) is given by (Walker, 1989) 

GZ=AGr(GAGr) -~ (12) 

Now, Eq. (12) also can be expressed as 

St 
G . = A G r ( G A G  r) - l=  

-S. I3] 

(13) 

where G ~ = A G r ( G A G  r) -l denotes no squeezing 

pseudo-inverse suggested by Walker et al. (1989). 
Accordingly, the internal loading term given in 
Eq. (5) also will be replaced by (1-G~G). 

In this paper, the geometry of the internal load- 
ing terms will be analyzed in detail. The claim of 
Walker is opposite to previous concept of internal 
loading, which exists only in the homogeneous 
solution. This paper reclaims that the Walker 
algorithm is incorrect and that the previous algo- 
rithm is correct by showing proof and some illus- 
trative examples. 

2.2 Types of internal loading 

2.2.1 Two manipulators in the 2-dimension- 
al space 

The concept of internal loading will be ex- 
plained with a simple example given in Fig. 1. 
XYZ denotes a coordinate frame attached to the 
object. Assume that the two manipulators are at 
the same distance from XYZ coordinate, and 
grasp the common object. In the plane, the trans- 
formation matrix of Eq. (5) can be described as 

I ,  oo , o !] 
G =  0 i 0 0 I 

- r y l  rxl 1 ~ ry2 rx2 
(=4) 

f .y, Y ~  

m:, .[~, f ,z 

./',2 

Fig. 1 Planar motion by two manipulators 
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and P and __F are given by 

g~[fx f ,  mz] r (15) 

F = r F (  Fzr] r (16) 

with 

__.F~= If.,, fyt rn~,] r for i=1 ,  2 (17) 

respectively. When the position vectors are given 
by _ O = [ - 1  0] r and ~ = [ 1 0 ]  r, the internal 
loading matrix of this case can be obtained as 

0.5 0 0 
0 0.25 0.25 
0 0.25 0.75 

-0.5 0 0 
0 -0.25 -0.25 
0 0.25 -0.25 

I-G+G = 

-0.5 0 0 
0 -0.25 0.25 
0 -0.25 -0.25 

(18) 
0.5 0 0 
0 0.25 -0.25 
0 -0.25 0.75 

where G + denotes the weighted pseudo inverse 
with identity weight. This matrix is a 6 by 6 
square matrix whose rank is 3. Thus, this matrix 
has three independent internal loadings. So, we 
can obtain the basis of internal loading from Eq. 
(ig) by using row reduced echelon method. The 
basis of the internal loading in the planar case can 
be obtained as the following the three vectors 

F =  [A, f,x m~x/~a/~2 real  r 

[i 0 0 - - 1  o 0 ] r : x - - f o r c e  (19) 

[0 1 2 0 - -10 ]  r :  y--force (20) 

[0 0 --1 0 0 l ] r :  z--moment (21) 

Fig. 2 shows the shape of the internal loading 
given by Eqs. (19)-(21). The X-directional in- 
ternal force and Z-directional internal moment 
act on the opposite direction to each other. How- 
ever, in the Y-direction, Z-directional moment 
should be applied to sustain equilibrium for a 
given pair of the opposite Y-directional forces. 
Physically, this represents a situation that the left 
end of the object is clamped while sustaining 
equilibrium. 

If  the object is not a rigid body and a compliant 
body, it will be deformed by applying these inter- 
nal forces and moments. 

Y 

,~,'~(l) T A,m(2)  

/ 
Z 

(a) Internal loading in the X-direction 

y f,.2 

A r m ( l ) ~  ~ X Arm(2) 

/ "/z 
L, 

(b) Internal loading in at the Y-direction 

Y 

(c) Internal moment in the Z-direction 

Fig. 2 Internal loading by two manipulators lbr 
planar case 

We only analyzed the homogenous solution 
term. Now, we will analyze the particular solu- 
tion term. The particular solution generally does 
not affect the internal loading, which is opposite 
to Walker's algorithm. So, we would like to 
clarify this argument by simulation. The relation- 
ship between the force and moment at the opera- 
tional space and the grasping space can be re- 
spectively defined by transformation matrix. 

F__,= GaF,, f f  z = GzF_.2 (22) 

When the planar dual arm of Fig. I moves in the 
positive Y-direction, the operational force can be 
expressed as P =  (0 I O)r. For this case, Table 1 
shows the difference of the force and moment 
between the grasping space and operational space. 
This result shows that the internal loading exists 
at the operational space, while the internal load- 
ing does not exist in the grasping space as shown 
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Table 1 Comparison of internal loadings 

Space Region P [0 ! 0] 

F1 Eo 05 -0.5] 
The operational space ~2 [0 0.5 0.5] 

[005 o] 
The grasping space F~ [0 0.5 0] 

in Fig. 2. Actually, the result based on the grasp- 

ing space makes more sense because it is physi- 
cally correct, but the internal loading (0.5, --0.5) 
based on the operational space is fallacious be- 
cause it is not actually internal force. Therefore, 
in this work, we will analyze the internal loading 

at the grasping space. 

2.2.2 Two manipulators in tile spatial do- 
main 

Now, we consider a spatial case and assume 

that two manipulators grasp a common object in 

the spatial domain. P,  F and G can be described 

a s  

0.25 

0 
0 
0 
0 

--0.25 
--0.25 

0 
0 
0 
0 

--0.25 

0 0 0 

0.5 0 0 
0 0.25 0.25 
0 0.25 0.75 0 
0 0 0 0.5 

0 0 0 0 
0 0 0 0 

--0.5 0 0 0 
0 --0.25 --0.25 0 
0 0.25 --0.25 0 
0 0 0 0.5 
0 0 0 0 

0 --0.25 --0.25 

0 0 0 

0 0 0 
0 0 
0 0 

0.75 0.25 
0.25 0.25 

0 0 
0 0 
0 0 
0 0 

--0.25 0.25 

This matrix is a 12 by 12 square matrix whose 
rank is 6. Therefore, there are six independent 
internal Ioadings. We find the basis of  the internal 
loading fi'om Eq. (27) by using reduced row 
echelon method. The basis of  the internal loading 
can be obtained as following 

E = [A,/,, fz, mz~ m,~ ~n~,/~ 1,~ A~ m~ m~ m~] r 

[ - I O 0 0 0 0 1 0 0 0 0 1 ] r : x - f o r c e  (28) 

[ 0 1 0 0 0 0 0 - - 1 0 0 0 0 I t : y - f o r c e  (29) 

[ 0 0 1 2 0 0 0 0 - 1 0 0 0 I t : z - f o r c e  (30) 

[ 0 0 0 - 1  0 0 0 0 0  1 0 0 ] r : x - m o m e n t  (31) 

A r m ( l )  

Fig. 3 

Arm(2)  
Z 

Spatial motion by two manipulators 

P_P: [fx fy fz mx my mz] r (23) 

F =  IF(  FI]  r (24) 

with 

E_i = [fx, f , ,  fzi rex, my, mzi] r for i = 1, 2 (25) 

G = [ I 3  0 1, 0 ]  
[_St I3 Sz Is (26) 

respectively. When the position vectors are locat- 
ed at ~ = [ 0  - - I  0 ] r  and r z = [ 0  1 0]r ,  the 

internal loading matrix ( I -G+G)  can be ob- 
tained as 

0 0 0 0 - -0 .25 

- 0 . 5  0 0 0 0 

0 --0.25 0.25 0 0 
0 --0.25 --0.25 0 0 
0 0 0 --0.5 0 
0 0 0 0 --0.25 
0 0 0 0 0.25 

0.5 0 0 0 0 
0 0.25 --0.25 0 0 
0 --0.25 0.75 0 0 
0 0 0 0.5 0 
0 0 0 0 0.75 

(27) 

[ 0 0 0 0 1 0 0 0 0 0 - 1 0 ] r : y - m o m e n t  (32) 

[ 0 0 0 0 0 1 0 0 0 0 0 - 1 ] r : z - m o m e n t  (33) 

Fig. 4 shows the shape of the six internal load- 
ings. The X-directional internal forces have the 
same magnitude, the same line of  action, but the 
opposite direction. Therefore, an offset moment in 

the Z-direction should be given at the second 
manipulator in order to sustain equilibrium. The 
Y-directional forces have the same magnitude, 
the same line of action, but the opposite direction. 
The Z-directional forces have the same magni- 



Analysis o f  Internal Loading at Multiple Robotic Systems 1559 

Arm(I) At,,,(2) 

(a) Internal force in the 
X-direction 

Arm(l )  Z Arm(2) 

(d) Internal moment in tile 
X-d irection 

,i,.,,,O) a,-,,,(2) Z 

.L, ' d /  "" J , :  
" X  

(b) Internal force in the 
Y-direction 

Arm(I) Z A,'n,(2) 

(e) Internal moment in tile 
Y~direction 

A,':n0) Z A,',,,(2) 

(c) Internal force in the 
Z-direction 

Arm( I )  Z Arm(2)  

. . . . . .  ,---:r_.__ k 

(f) Internal moment in the 
Z-direction 

Fig. 4 Inte,'nal Loading of a dual manipulator in 3-dimensional space 

tude, the same line of  action, but the opposite 
sense. 

In that case, the moment in the X-direction 
should be applied at the first manipulator in 
order to sustain equilibrium. The moments in the 

X-, Y-, and Z-directions have the same magni- 
tude, but the opposite direction, respectively. 

Similar to the planar case, the object is clamped 
in the X-  and Z- directions. Thus, this case has 

one linear internal loading, two clamped type 
internal loadings, and three moment type internal 
loadings. 

2.2.3 Triple manipulator in planar domain 
When three manipulators rigidly grasp a com- 

mon object in the planar domain, the position 

vectors is given as r 1 = [ - - I  - I / ¢ r J - ]  r, £z-----[l 

- 1 /  f 3 -  ] r  and Ks = [ 0  2/ f-3- jr .  The 

transtbrmation matrix can be expressed as 

I °° ' °°  G = 0 I 0 0 I 0 0 1 (34) 

- r y l  rx~ I - r y 2  rx2 1 - r ~  rxa 

and at;'/of the i- th manipulator can be expressed 

as [fx, fyl mzi] r for i =1,2,3, Then the internal 
loading matrix can be obtained as 

Fig. 5 Triple manipulator ill planar domain 

I - G + G  = 

0.62 0.08 --0.08 --0.38 --0.08 --0.08 --0.24 0 --0.08" 
0.08 0.52 0.14 0.08 --0.19 0.14 --0.17 --0.33 0.14 

--0.08 0.14 0.86 --0.08 --0.14 --0.14 0.17 0 --0.14 

--0.38 0.08 --0.08 0.62 --0.08 --0.08 --0.24 0 --0.08 
--0.08 --0.19 --0.14 --0.08 0.52 --0.14 0.17 --0.33 --0.14 
--0.08 0.14 --0.14 --0.08 --0.14 0.86 0.17 0 --0.14 
--0.24 --0.17 0.16 0.24 0.17 0.17 0.48 0 0.17 

0 --0.33 0 0 --0.33 0 0 0.67 0 
--0.08 0.14 --0.14 --0.08 --0.14 --0.14 0.17 0 0.86 

(35) 
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(a) Internal force in the (b) Internal force in the (c) Internal moment in the 
X-direction Y-direction Z-direction 

(d) htterltal force in the (e) Internal force in the (f) Internal moment in the 
X-direction Y-direction Z-direction 

Fig. 6 Shape of the basis of internal loading for triple manipulator in the planar domain 

This matrix is a 9 by 9 square matrix whose 
rank is 6. Therefore, by using the row-reduced 

echelon method, the dimension of  the internal 
loading basis is 6. The six vectors consisting of 
the basis can be obtained as 

F= [ f xff ,,l mz, A2/,2m,2 / ,a f  lame3 ] r 

[1 0 0 - - 1  0 0 0 0 0 ]  (36) 

[0 I 0 0 - - 1  2 0 0 0 ]  (37) 

[o o 1 o o - i  o o o] ~ (38) 

[ 0 0 0 1 0 0 - - 1  0 1.73] r (39) 

[ 0 0 0 0  1 0 0  --1 I ] r  (40) 

[ 0 0 0 0 0  l 0 0  --1] r (41) 

Fig. 6(b),  (d), and (e) show the internal load- 
ings that come from the combination of  the inter- 

nal force and moment. If the internal force that 
is symmetric to the refe,'enced coordinate is exert- 

ed on the ( r l - -  r~) line, then the moment does not 
occur. However, the internal forces are generally 
coupled to internal moment. Fig. 6(c) and (f) 

show that the internal moment independently oc- 
curs because the moment is a free vector. Thus, 

this triple manipulator has the internal Ioadings 
of  one linear type, three clamped types, and two 
pure moment types. 

2.2.4 Triple manipulator in spatial domain 
When a robotic system consists of three mani- 

pulators at three dimensional space, the number 
of  independent internal loading will be 12. Analy- 
sis of the internal loading for the triple arm has 
not been addressed so far because of  the com- 

plexity of  the internal loading. When the position 
vectors of  the end-effector for the three mani- 
pulators are given by ; ' 1=[0  --1 0IT, __rz=[ 0 1 

0] r, and _ra=[--v/3 - 0 0] r. The G and F__.are 

respectively given by 

a=[ho ho I~o] 
IS ,  fi Sz la Sa Is (42) 

F = [ F  r F r F r ] r  (43) 

then the internal loading matrix ( I - G + G )  can 
be obtained as 

. IAr,,(3) 

• F ,  

L :  - 

a zw X 
E, 

Fig. 7 Triple manipulator in spatial domain 
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A 
• __ y- 

(a) Internal force in the 
X-direction 

(d) Internal moment in the 

X-direction 

(b) Internal force in the 
Y-direction 

L', /~ .  

/7, .: 

(e) Internal moment in the 

Y-dir~tion 

E l  - '  

(c) Internal force in the 
Z-direction 

/ 7  3 

(f) Internal moment in the 

Z-direction 

Fig. 8 Shape of internal loading basis for triple manipulator in spatial domain 

0.52 0 0 0 -0.14-0.19-0.08 0 0 0 -0.14-0.33 0.17 0 0 0 -0.14 

-0.08 0 0 0 -0.08 0.08 -038 0 0 0 -0.08 0 -0.24 0 0 0 -0.08 

0 0.4 0.2 0.12 0 0 0 -0.2 0.2 0.12 0 0 0 -0.2 0.2 0.12 0 

0 0.2 0.8 0 0 0 0 -0.2 -0.2 0 0 0 0 0 -0.2 0 0 

0 0.12 0 0.8 0 0 0 0.12 0 -0.2 0 0 0 -0.23 0 -0.2 0 

-0.14 0 0 0 0.86 0.14 -0.08 0 0 0 -0.14 0 0.17 0 0 0 -0.14 

-0.19 0 0 0 0.14 0.53 0.08 0 0 0 0.14 -0.33 -0.17 0 0 0 0.14 

-0.8 0 0 0 -0.08 0.08 0.62 0 0 0 -0.08 0 -0.24 0 0 0 -0.08 

0 -0.12-0.2 0.12 0 0 0 0.4 -0.2 0.12 0 0 0 -0.2 -0.2 0.12 0 

0 0.2 -0.2 0 0 0 0 -0.2 0.8 0 0 0 0 0 -0.2 0 0 

0 0.12 0 -0.2 0 0 0 0.12 0 0.8 0 0 0 -0.23 0 -0.2 0 

-0.14 0 0 0 -0.14 0.14 0.08 0 0 0 0.86 0 0.17 0 0 0 -0.14 

-0.33 0 0 0 0 -0.33 0 0 0 0 0 0.67 0 0 0 0 0 

0.17 0 0 0 037 -0.17-0.24 0 0 0 0.17 0 0.48 0 0 0 0.17 
0 -0.2 0 -0.23 0 0 0 -0.2 0 -0.23 0 0 0 0.4 0 -0.23 0 

0 0.2 - 0 2  0 0 0 0 -0.2 -0.2 0 0 0 0 0 0.8 0 0 

0 0.12 0 -0.2 0 0 0 0.12 0 -0.2 0 0 0 -0.23 0 0.8 0 

-0.14 0 0 0 -0.14 0.14 -0.08 0 0 0 -0.14 0 0.17 0 0 0 0.86 

This matrix is a 18 by 18 square matrix whose 

rank is 12. Therefore, using row-reduced echelon 

method, the basis of  internal loading consists of  

12 vectors that can be obtained as 

[1 0 0 0 0 0 0 0 0 0  --1 0 0 0 0  --1]  r (45) 

[0 I 0 0 0 0 0 0 0 0 0 0 0 - 1  000-1.03]r(46)  

[00  1 0 0 0 0 0 0 0 0 0 0 0 - 1  I 1.730] r (47) 

(44) 

[ O 0 0 1 0 0 0 0 0 0 0 0 0 0 0 - - 1 0 0 ]  * (48) 

[ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  - - I  O] r (49) 

[ o o o o o ~ o o o o o o o o o o o - l ]  • (50) 

[ o o 0 0 0 0 1 0 0 0 0 0 - 1 0 0 0 0 1 ]  ~ (51) 

[ 0 0 0 0 0 0 0  I O 0 0 0 0 - 1 0 0 0  1.73] r (52) 
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[ 0 0 0 0 0 0 0 0  I 0 0 0 0 0  - I  - 1  1.730]r(53) 

[ 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0  --1 0 0 ]  r (54) 

[ o o o o o o o o o o l o o o o o - l o ]  r (55) 

[ 0 0 0 0 0 0 0 0 0 0 0  I 0 0 0 0 0  --1] r (56) 

The trends are similar to the planar case. Internal 
moments also independently happen. However, 
internal forces are coupled to internal moments 
that are called couple moment. Fig. 8 shows the 

shape of  the internal loading between the first and 
third manipulator. The other internal loading can 

be also visualized similarly. 

2.3 General case 
The above analysis can be extended to the 

general case. The number of  the internal loading 
basis is 6×  (n - l )  at the spatial motion, 3X (n - l )  

at the planar motion with n number of  mani- 

pulators. 

3. Condition of  no Internal  Loading at 

the Part icu lar  Solution 

It has been argued whether the particular solu- 
tion in the force resolution problem of multiple 
robotic systems has some internal force or not. 
Walker et al. (1989) suggested a weighted pseudo- 

inverse solution to resolve this problem. How- 
ever, we have shown that Walker's algorithm has 
not been proven as shown in the sub section 2.2. 
I. It will be shown that a weighted pseudo inverse 
solution has the additional internal squeezing 
force. 

(Proposition) 
The row space and the null space of  Eq. (7) are 

mutually orthogonal if and only if the weighting 

matrix is an identity matrix. 

(proof)  
Assume that the row space and the null space 

are mutually orthogonal. Then, the inner product 
of  those will always satisfy 

G~,r (I - G~vG) = 0  (57) 

Eq. (57) can be expressed, in more detail, as 

(GW-IG r) rGw-r 
_ (GW_~Gr)_rGW_rW_,GrCGW4Gr)_tG=O (58) 

Assuming 

w - r w  - l= W -l (59) 

then, Eq. (58) can be expressed as 

(GW-1G r) - r G ( w - r - I )  =0 (60) 

If  GW-~Gr~O in Eq. (60), then ( w - r - I )  must 

be zero or G and ( W - r - l )  should be ortho- 

gonal. Both cases yield 

W - r = I  (61) 

Taking transpose and inverse on both sides yields 

W = I  (62) 

Eq. (62) also satisfies the initial assumption given 

by Eq. (59). 
Now, let's assume that the weighting matrix is 

given as an identity matrix. Then Eq. (58) can be 

expressed as 

(GG r) - r G -  (GG r) -rGGr(GGr) -~G (63) 

where, since GGr(GGr) - I=I  

(GG r) - r G -  (GG r) -rG=O (64) 

Thus, it is proven that row space and the null 

space are mutually orthogonal. 
As a conclusion, when the weighting matrix is 

given as an identity matrix, the particular solution 

does not have internal loading at the grasping 
space. However, if the weighting matrix is given 
arbitrarily, then the internal loading exists at the 
grasping space. For instance, when the grasping 
positions are given as _rl=[ - 1 0] r and 7"_2 = 
[! 0] r, and the weighting matrix is a 6 by 6 
identity matrix. Table 2 shows that all six cases 

I i r i  

• P"- ~'ql l If / !m.~ 

Z 
/ , ,  a,.,(,) ,~,,,,(2) 

Fig. 9 Planar motion 
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Table 2 Load distribution for identity weighting 

Case I Case 2 Case 3 

e [01 i ] r  [00 l]r  [1001 ~ 

F, [0 0.25 0.25] r [0 -0.25 0.25] r [0.5 0 01 r 
E, [0 0.75 o.251 r C0 0.25 0.25] T C05 0 0] T 

Case 4 Case 5 Case 6 

P [01 O] r [l I O] r [l 0 I] r 

.b", [00.50] r [0.50.50] r [0.5 --0.250.25]' 

F2 [00.5 O] r [0.50.5 O] r [0.5 0.25 0.25] r 

Table 3 Load Distribution for Nonidentity 
Weighting (planar case) 

Case 1 Case 2 Case 3 

P [01 l] r [00  l] r [ 1 0 0 ]  r 

F, [ -o .s  o,s 0.5] ~ [0 0 0.5]r [0.5 0 o] ~ 

F, [0.5 0.5 0.Sir [0 o 0.5] ~ [0.5 o 0It 

Case 4 Case 5 Case 6 

P [0 l O] r [1 J O] r [I 0 l] r 

F, [ -0 .50 .50]r  [00.50]r [0.500.5]r 
Y~ [o.5 o.5 o]r [t 0.5 o] T Co.5 o o.5]r 

do not exhibit any internal loading tbr the given 
operational load (/9). Refer to Fig. 2 for three 

types of internal loading in this example. 
However, when the weighting matrix is given 

as, which is an arbitrary nonidentity matrix 

W =  

0 0 0 0 1 0  
0 0 0 0 0 1  
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  

(65) 

Fig. 10 

Arm(I) l ~ -- I Arm(2) 

' " " " 0.75 
(a) Case 1 of Table 2 : P = [ 0 1 1 ]  r 

10.25 
Arm( l )L  l ~ , , P  1 An,,(2)~, 

 0]s 2r" °2¢ I 
0.25 

(b) Case 2 of Table 2 : ._p_P= [00  I ] r 

a . . ( l )  j 1_' I ar,,,(21 
-°.5 7 "  o.5 

'~)-5 J0.5 / '~  I 0 . 5 / j  10.5 

(c) Case 1 of Table 3:__P=f0 l IJ r 

r ~  

-0.5 4 - - t l "  ~o TM " ~ .  0.5 

1).5 10.5 

(d) Case 4 of Table 3 : .PP=[010]r  

Comparison of the internal loading of the 
table land 2 

Fig. 11 

ca, ,  l 

Spatial motion by two manipulators 

then the case 1 and 4 of  Table 3 yield some 
internal loading along the X-direction. Fig. 10 

(a) and (b) show the case of no internal loading. 
Fig. 10(c) and (d) show the cases of the internal 

loading. 
Figure I I shows a dual-arm operated in 3-di- 

mensional space. The grasping position of the two 
arms is given as El = [ - I 0 0] r and r 2 =  [ 1 0 0] r, 
and the weighting matrix is a 12 by 12 identity 

matrix. As shown in Table 4, this example has 
no internal loading. 

When we map the force and moment from the 

grasping space to the operational space, Walker et 
a1.(1989) suggested that the particular solution 
has additional internal loading at the operational 
space. Therefore, Walker proposed no squeezing 
weighted pseudo-inverse that removes the inter- 
nal loading at the operational space. However, 
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when the weighting matrix 

W = [  W' ~,J with Wl=[73 ~]  (66) 

T a b l e 4  Loading Distribution in 3-Dimensional 
Space with Identity Weighing 

Case 1 Case 2 

e [ 0 1 0 0 0 0 ]  ~ [00 1 0 0 0 ]  ~ 

F, [ 0 0 . 5 0 0 0 0 ]  r [ 0 0 0 . 5 0 0  O] r 

F2 [ 0 0 . 5 0 0 0 0 ]  r [ 0 0 0 . 5 0 0 0 ]  r 

Case 3 Case 4 

V [0 100 I 0] ~ [00 i 00 i] ~ 
F, [o 05 0.25 0 0.25 o] ~ [0 -0.25 0.5 0 0 0.25] • 

F: [0 0.5 -0.25 0 0.25 0]r [0 0.25 0.5 0 0 0.25] r 

Table 5 Load Distribution in 3-Dimensional Space 
with Nonidentity Weighting 

P 
F, 

F,  

P 
£,  

F2 

Case I Case 2 

[o t o o o o ]  ~ [ o o  i o o o ]  ~ 

[0 0.5 0 0 0 0.5] ~ [0 0 0.5 0 -0.5 o] ~ 
[0 0.5 0 0 0 -0.5]  • [0 0 0.5 0 0.5 o] ~ 

Case 3 Case 4 

[0 1 0 0  l 0] ~ [ 0 0  ! 0 0  l ]  ~ 

[0 0.5 0 0 0.5 0.5] r [0 0 0.5 0 -0 .5  0.5] r 

[ 0 0 . 5 0 0 0 . 5 - 0 . 5 ]  r [ 0 0 0 . 5 0 0 . 5 0 . 5 ]  r 

Arm(I) ~/~ Arm(2~ 

1 , ' t  

o2.s I o..s -o~.s I O..s 
(a) Case 3 of Table 4 

,I,,,,(0 A,-,,,(2) 

I o . 5  " I o.5 
(c) Case I of Table 5 

Fig. 12 

~ (~-) 

(b) Case 2 of Table 4 

A,,,(0 .,~,,,,(-') 

(i. (I.5 

(d) Case 2 of Table 5 

Comparison of internal loadings ['or two 
cases 

suggested by Walker  is employed, it is found 

again that the internal loading exists as shown in 

Table 5. The Walker 's  algorithm is incorrect. In 

Fig. 12, we compare the case of  internal loading 

with that of  no internal loading. 

4. I n t e r n a l  F o r c e  A n a l y s i s  

a t  t h e  T h r e e - F i n g e r e d  

a n d  T h r e e - L e g g e d  S y s t e m s  

The previous examples were for tightly or rig- 

idly grasped case. Now, we will consider a special 

interface between the grasped object and the mul- 

tiple manipulators. We assume that each fingertip 

makes a point contact offering fi'iction force to the 

object. Grasping space analysis is good for the 

analysis of this type of  problems. In this case, Eq. 

(5) is transformed as 

G=[lS,13 && ... ~3 ] ~R,.3m (67) 

The first term on the r ight-hand side of Eq. (7) 

represents the manipulating force, and the second 

term denotes grasping force or internal force. 

Kumar et al. (1988) also defined those terms as an 

equilibrating force and an interaction force, re- 

spectively. The equilibrating tbrces are the threes 

required to maintain equilibrium against an ex- 

ternal load, and the interaction force must have a 

zero net resultant. The definition of  the interac- 

tion force is similar to the internal force. So, the 

number of the internal forces or the interaction 

force is 3×n--6130 4] if and only if the contact 

points are non co-l inear.  However, the interac- 

tion lb,'ces exist on the ( r i - - D )  line, and the 

internal forces also exist in any direction at the 

coplanari ty of  contact points. 

Yoshikawa et a1.(1987) defined the internal 

loading by using three unit vectors given by 

/ '3 -  7"2 h -- r3 /'2-- h 
_e, I l l - _ n i l  ' e J  IIr,-r311 'e-~ l i r a - r i l l  (681 

where e~ is the unit vector directing from C; to 

C,+t. Then, the inte,'nal forces can be constructed 

by 
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M .  C3 

C~ C 2 

e 2 

Fig. 13 Internal force 

F1 = zse_s + z~ ( - e_2) 

F ~ = z ~ e ,  + z~ ( -  e~) 

~ =  z2e~ + z ,  ( - el) 

(69) 

where zl, z2, and za are arbitrary real numbers. 

The matrix form of the internal force can be 
expressed as 

[;:1 [ ff~ = e_~ 0 __3 = (70) 
- -  e l  e2 

and three internal forces form the closed triangle. 

4.1 Three-fingered system 
When a three-fingered system contacts a com- 

mon object, the transformation matrix can be 
expressed as 

G=[ Is Is Is] (71) 
LS, S~ S3 

The position vectors of the contact point are £1= 

[ - I  - , / -3- /3  0] r, D = [ i  - 4 " ] - / 3  0] r, and __ra = 

[0 24"J-/3 0] r, and the internal force matrix can 

be obtained as 

I -G+G 
0.58 0.14 0-0.42-0.14 
0.14 0.42 0 0.14 -0.08 

0 0 0 0 0 
-0.42 0.14 0 0.58 -0.14 

= -0.14 -0.08 0 -0.14 0.42 

0 0 0 0 0 
-0.17 -0.29 0 -0.17 0.29 

0 -0.330 0 -0.33 

0 0 0 0 0 

0 -0.17 0 0 

0 -0.29 -0.33 0 

0 0 0 0 
0 -0.14 0 0 
0 0.29 -0.33 0 

0 0 0 0 
0 0.33 0 0 
0 0 0.67 0 
0 0 0 0 

(72) 

This matrix is a 9 by 9 square matrix whose rank 

is 3. Therefore, the basis of internal force is 3. 
Column 3, 6, and 9 of Eq. (72) have zero value. 

This is because the plane of the contact points is 
perpendicular to the Z-axis of  the object coordi- 
nate. By using row-reduced echelon method, the 

basis of  internal loading can be obtained as 
[i 0 0 0  - -1 .730 - - I  1 .730]r  (73) 

[0 1 0 0 I 0 0 --2 0] r (74) 

[ 0 0 0  1 - - 1 . 7 3 0 - - 1  1.730]r  (75) 

Eqs. (73) through (75) form a closed force trian- 
gle. The interaction force can be obtained using 
the concept of force equilibrium at the contact 

point. From Eq. (70), the z vectors corresponding 
to the internal forces given in Eqs. (73) through 

(75) can be obtained as 

z t = [ - - 2  0 I] (76) 

zz= [ - -2 / , / - J  - - - 2 / f 3 -  1/4'3-] (77) 

z s = [ - - 2  0 O] (78) 

I'--L 

Fig.  14 

C~ 

Three-fingered system 

Thus, the reduced row echelon method can be 
employed as a general approach to analyze the 
internal loading for general types of  multiple 

robotic systems. 

4 .2  T h r e e - l e g g e d  s y s t e m  

The concept of the internal force at the three- 
legged system is the same as that of  three-fingered 
system, but the difference is the object being 
grasped. The position vectors of  the end-point 
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12(I , ) 

Fig. 15 Three-legged system 

of legs are r 1 = [ - - 2  - - 2 , / 3 / 3  --3] r, ~ = [ 2  

- - 2 f 3 / 3  --4] r, and D----J0 4 / 3 - / 3  --4] r, and 

the internal force matrix can be obtained as 

I -G+G 
0.54 0.13 

0.13 0.39 
-0.15 -0.09 
-0.39 0.14 

= -0.13 -0.08 

0.17 -0.02 
-0.15 -0.27 
0.01 -0.32 

0.04 0.11 

-0.15 0.39 -013 0.12 -0.15 0.01 0.04 

-0.09 0.14 -0.08 -0.02 -027 -0.32 0.11 
0.05 0.08 0.04 -0.03 0.08 0.04 -0.03 
0.08 0.56 -0.15-0.12-0.17 0.01 0.04 
0.04 -0.15 0.41 -0.02 028 -0.34-0.02 

-0.0 3 -0.12 -0.02 0.03 0 0.05 -0.01 

0.08 -0.17 0.28 0 0.32 -0.01-0.08 
0.04 0.01 -0.34 0.05 -0.01 0.65 -0.09 

0.03 0.04 0.02 -0.01-0.08-0.09 0.03 

(79) 

This matrix is a 9 by 9 square matrix whose rank 
is 3. Therefore, the basis of  internal force is 3, and 
by using row-reduced echelon, the internal forces 
can be obtained as 

[1 0 --0.25 0 --1.73 0.25 --1 1.73 0] r (80) 

[0 1 --0.14 0 I --0.14 0 --2 0.28"] r (81) 

[ 0 0 0  1 - - I . 7 3 0  --I  1 .730]r  (82) 

Note that Kumar et a1.(1988) derived the condi- 
tion for zero interaction force between legs. It is 
described as 

( F m l -  Fro2) • ( r  l -  r2) = 0  

( F . . , - F . 3 )  • ( r , -  rs) = 0  (83) 

(F , z - -  F,s)  . ( r2-- rs) = 0  

where Fml denotes the manipulating force at the 
i-th leg. The internal force vectors satisfy the 
condition for zero interaction force. Therefore, 

the ,'educed row echelon method is accepted as a 
general approach to analyze the internal loading 
of  multiple robotic systems. 

5. Conclusions 

The internal loading can be defined as the 
forces and moments that do not affect the motion 

of the end-effecter. The basis of  the internal load- 
ing has 6 ×  (n - l )  independent vectors. However, 

there has been some confusion in using the con- 
cept of internal loading in multiple robotic sys- 

tems such as multiple arms, multi-fingered hands, 
and walking machines. This paper aims at clari- 
fying the physical meaning of  internal loading by 
using the grasping space based analysis. A reduc- 

ed row echelon method is employed to analyze 
the null space of  multiple robotic systems. Firstly, 

the condition of  no internal loading at the grasp- 
ing space is derived, and is met when the weight- 
ing matrix is an identity matrix. Secondly, we 

analyze the internal loadings and show the shapes 
of the internal loading through various examples. 
Finally, the internal forces for three-fingered and 

three-legged systems are analyzed as special ex- 
amples. 
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