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Analysis of Internal Loading at Multiple Robotic Systems
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When multiple robotics systems with several sub-chains grasp a common object, the inherent
force redundancy provides a chance of utilizing internal loading. Analysis of grasping space
based internal loading is proposed in this work since this method facilitates understanding the
physical meaning of internal loadings in some applications, as compared to usual operational
space based approach. Investigation of the internal loading for a triple manipulator has been few
as compared to a dual manipulator. In this paper, types of the internal loading for dual and
triple manipulator systems are investigated by using the reduced row echelon method to analyze
the null space of those systems. No internal loading condition is derived and several load distri-
bution schemes are compared through simulation. Furthermore, it is shown that the proposed
scheme based on grasping space is applicable to analysis of special cases such as three-fingered

and three-legged robots having a point contact with the grasped object or ground.
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1. Introduction

Analysis of an internal loading at multiple
robotic systems has been a hot research area.
Albert et al. (1988) proposed an weighting matrix
in order to minimize unwanted moment at the
grasping space. Kumar et al.(1988) defined the
internal loading as an interaction force at the
walking vehicle and the multi-fingered robot, and
proposed no interaction force condition. Lipkin
et al.(1991) defined the physical meaning of in-
ternal loading using the concept of wrench and
twist. Nakamura et al.(1987) defined an internal
loading using virtual work principle and opti-
mized the internal loading using the condition of
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the static friction constraint. Cheng et al.(1991)
addressed configuration of two closed chains at
the multiple robotics system and force balance at
the contact point. Uchiyama et al.(1988) showed
the type of the internal loading for the two-arm.
Nahon et al.(1992) used the weighting matrix in
order to unify the units of force and moment at
the algorithm minimizing the internal loading. He
also minimized internal loading using quadratic
form and two constraint conditions. Choi et al.
(1995) proposed minimized constraint condition
by a quadratic form and optimized force distri-
bution using a minimized internal loading, but
does not describe type of the exact internal load-
ing. Zuo et al.(1999) addressed the difference be-
tween an internal force and an interaction force.
So, the internal force consists of the interaction
and a parallel force at the contact point. Kerr
et al.(1989) described the internal force as the
grasping force at the multi-fingered hands and
proposed optimal selection of an internal grasp
force using linear programming. Walker et al.
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(1989) proposed a weighted pseudo-inverse so-
lution that removes an internal loading in partic-
ular solution. Yoshikawa et al.(1987, 1999) de-
fined a grasping force that is the internal force
satisfying the friction constraint and manipulating
force, and also proposed an virtual truss as a
mode! of the object grasped at z contact points.
Li et al.(2003) proposed an algorithm for three-
finger force-closure grasp.

Based on literature survey, the internal loading
in multiple arms has been analyzed using the
operational space approach except few cases.
However, the notion of internal loading defined
in the operational space is not visible, because it
is explained at a single operational position. This
paper claims that in some application, grasping
space approach has advantage to represent the
physical meaning of internal loading, in compar-
ison to operational space approach. One example
is the case of an elastic object that is grasped by
many robots. Another case is the multi-fingered
hands or walking machine, in which the interac-
tion load between two adjacent fingers or legs can
be interpreted as an example of grasping force.

Linear algebraically, it is known that the par-
ticular solution corresponding to the motion part
does not create any internal loading, and only the
homogeneous part has something to do with in-
ternal loading. The Walker’s algotithm (Walker,
1989), defined in the operational space, claims
that the internal loading also exists in the partic-
ular solution in multiple arm operation. And thus
they proposed a way to eliminate a probable
internal loading in the particular solution. This
paper shows that the typical pseudo-inverse solu-
tion does not in fact create any internal loading.
On the other hand, the weighted pseudo-inverse
solution proposed by Walker actually created
internal foading. This (act was shown through a
simple example.

In this paper, we attempt to analyze the internal
loading at multiple robotic systems by using
reduced row echelon method and show the shape
of the basis of the internal loading. Grasping
space based analysis will be performed to provide
better physical meaning of the internal loading.
Secondly, we derive the condition of no internal

loading and compare the internal loading defined
at the operational space with that defined at the
grasping space for dual and triple robotic sys-
tems. Lastly, using the same methodology, three-
fingered and three-legged systems are illustrated
as special cases.

2. Concept and Type
of Internal Loading

2.1 Concept of the internal loading

An invisible force and moment are exerted on
the grasped object by each manipulator at the
multiple robotic systems. In this paper, we define
the internal loading as the forces and moments
that does not affect the motion of the end-effec-
tor. The relation between the total forces (f)/
moments (m) at the grasping space (F) with n
number of manipulators and forces/moments at
the operational space {P) can be described as '

P=GE (n
where
P=(fc fs fr mx my m.]T (2)
F=[F FF LF] (3)
with

Ee= (fxe fri fri mxe My mazt) T
for 1=1,2, -, n

(4)

and the transformation matrix can be expressed as

LOoLoO- L 0]
= 5
G [sl LS L Sk )
with skew symmetric matrix
0 —%z 7y,
Si= £ 0 —7¥x; (6)
=7y, ¥x, 0

for the position vector of the end-effector of the
i-th manipulator, 7,=[7rx, 7, 72,]7, and 3 by 3
identity matrix, A, respectively.

I Grasping space implies the space where manipulators
grasp an object, and operational space implies the output
space.
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The general solution of Eq. (1) can be ex-
pressed as

F=GwP+(I-GvG¢ (M

where, when G is row full-rank, the weighted
pscudo-inverse with weighting matrix, W, can be
expressed as

Gyv=WI'G"(GW'G") ™ (®

and & denotes an arbitrary vector. Doty et al
{(1993) addressed the weighted pseudo-inverse for
more general cases. The first term on the right-
hand side of Eq. (7) represents a particular solu-
tion, and the second term denotes a homogenous
solution that creates internal loading without
affecting the motion involved in the particular
solution,

When we map the force and moment from the
grasping space to the operational (or object)
space, Walker et al.(1989) claimed that the par-
ticular solution has additional internal loading at
the operational space. Based on his observation,
he proposed no squeezing weighted pseudo-in-
versc that removed an internal loading at the
operational space.

Suppose that F; denotes the effective forces
and moments of the i-th manipulator at the
operational space. Then, the transformation is
given by

F.=G.F; (9)

where the effective transformation matrix for z-th
manipulator is given by

~ |k O
cf—[sz IJ (10)
Let
[0 kL 0|
kL 0
0 kb
A= kL 0 (n
0
0 k£l
| o Eh O |

where ASRE*®” and £ is non-zero scalat. When
W=A, G} in Eq. (8) is given by (Walker, 1989)

Gi=AG"(GAG")™! (12)

Now, Eq. (12) also can be expressed as

~S I

G1=0G7(GAGH =+ i | (13)
L 0
"’Snl3

where GE=AGT(GAGT) " denotes no squeezing
pseudo-inverse suggested by Walker et al. (1989).
Accordingly, the internal loading term given in
Eq. (5) also will be replaced by (I—GZ%G).

In this paper, the geometry of the internal load-
ing terms will be analyzed in detail. The claim of
Walker is opposite to previous concept of internal
loading, which exists only in the homogeneous
solution. This paper reclaims that the Walker
algorithm is incorrect and that the previous algo-
rithm is correct by showing proof and some illus-
trative examples.

2.2 Types of internal loading

2.2.1 Two manipulators in the 2-dimension-
al space
The concept of internal loading will be ex-
plained with a simple example given in Fig. I.
XYZ denotes a coordinate frame attached to the
object. Assume that the two manipulators are at
the same distance from XYZ coordinate, and
grasp the common object. In the plane, the trans-
formation matrix of Eq. (5) can be described as

1 00 1 00
G=|] 0 10 0 10 (14)
— ¥ ¥ | 72 7x2 1

Yir P
Arm(1) r, A r, Am(2)
f— TR T, ),

o

L afl
Ja

Fig. 1 Planar motion by two manipulators

L s
4 x
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and Pand F are given by

P=[fx fy ms)” (15)
F=[F F" (16)

with
Fe=[fai foi mai]T for i=1, 2 (17)

respectively. When the position vectors are given
by n=[—1 0]7 and »=[1 0]7, the internal
loading matrix of this case can be obtained as

(05 0 0 —-05 0 0O
0 025 025 0 -—025 025
0 025 075 0 —025-025
—t =
I-6'G —-05 0 0 05 0 0 (18)
0 -025-025 0 025 —025
| 0 025 025 0 -025 0.75}

where G denotes the weighted pseudo inverse
with identity weight. This matrix is a 6 by 6
square matrix whose rank is 3. Thus, this matrix
has three independent internal loadings. So, we
can obtain the basis of internal loading from Eq.
(18) by using cow reduced echelon method. The
basis of the internal loading in the planar case can
be obtained as the following the three vectors

£= [fxl I Mz fro Frn m:z]T

[100—100]": x—force (19)
[0120 ~10)7: y—force (20)
(00 —1001]7: z—moment (21)

Fig. 2 shows the shape of the internal loading
given by Egs. (19)-(21). The X-directional in-
ternal force and Z-directional internal moment
act on the opposite direction to each other. How-
ever, in the Y-direction, Z-directional moment
should be applied to sustain equilibrium for a
given pair of the opposite Y-directional forces.
Physically, this represents a situation that the left
end of the object is clamped while sustaining
equilibrium.

If the object is not a rigid body and a compliant
body, it will be deformed by applying these inter-
nal forces and moments.
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{a) Internal loading in the X-direction
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(b) Internal loading in at the Y-direction
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)5—» X A Arm(2)
/ pm;:

Z

(c) Internal moment in the Z-direction

Fig. 2 Internal loading by two manipulators for
planar case

We only analyzed the homogenous solution
term. Now, we will analyze the particular solu-
tion term. The particular solution gencrally does
not affect the internal loading, which is opposite
to Walker’s algorithm. So, we would like to
clarify this argument by simulation. The relation-
ship between the force and moment at the opera-
tional space and the grasping space can be re-
spectively defined by transformation matrix.

Fi=G\FR, Fr=GF, (22)

When the planar dual arm of Fig. 1| moves in the
positive Y~-direction, the operational force can be
expressed as P=(0 1 0)T. For this case, Table |
shows the difference of the force and moment
between the grasping space and operational space.
This result shows that the internal loading exists
at the operational space, while the internal load-
ing does not exist in the grasping space as shown
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Table 1 Comparison of internal loadings

Space Region P [010)]
The operational space _‘Iil (005 ~05]
F. [0 0.5 0.5
The grasping space L 005 0]
F {0 0.5 0]

in Fig. 2. Actually, the result based on the grasp-
ing space makes more sense because it is physi-
cally correct, but the internal loading (0.5, —0.5)
based on the operational space is fallacious be-
cause it is not actually internal force. Therefore,
in this work, we will analyze the internal loading
at the grasping space.

222 Two manipulators in the spatial do-
main

Now, we consider a spatial case and assume

that two manipulators grasp a common object in

the spatial domain. P, F and G can be described

Jae Heon Chung, Byung-Ju Yi and Whee Kuk Kim

Arm ( 1 )

Arm(2)

Fig. 3 Spatial motion by two manipulators

£=[fx o [z mx my mz)T (23)
F=[F H (24)
with
E_i": [fxi St fzi MW, My, m;,-]’ for 1=1, 2 (25)
(B0 LEO
—[SL LS 13] (26)

respectively. When the position vectors are locat-
ed at 1=[0 —1 0]7 and 7=[0 1 0], the
internal loading matrix (J—G*G) can be ob-

as tained as
[ 025 0 0 0 0 —025—-025 O 0 0 0 —0.257
0 0.5 0 0 0 0 0 -—-05 0 0 0 0
0 0 025 025 O 0 0 0 —-025 025 0O 0
0 0 025 075 O 0 0 0 —025-025 O 0
0 0 0 0 05 0 0 0 0 0 —-05 0
—-025 0 0 0 0 075 025 O 0 0 0 —025 27)
—-025 0 0 0 0 025 025 © 0 0 0 025
0 —-05 O 0 0 0 0 0.5 0 0 0 0
0 0 —025—-0250 0 0 0 025 —025 ¢ 0
0 0 025 =025 0 0 0 0 —025 075 0 0
0 0 0 0 05 o0 0 0 0 0 0.5 0
| —-025 O 0 0 0 —025 025 O 0 0 0 075

This matrix is a 12 by 12 square matrix whose
rank is 6. Therefore, there are six independent
internal loadings. We find the basis of the internal
loading from Eq. (27) by using reduced row
echelon method. The basis of the internal loading
can be obtained as following

F=fu fn fa mxy iy M1 f2 Fio o2 Wi o M)

(10000010000 1]7: x—force  (28)
[o100000—10000]7: y—force  (29)
[00120000—1000)7: z—force  (30)

[000—-100000100]7; x—moment (31)

(0000100000 —1017: y—moment (32)
(00000100000 —1])7: 2—moment (33)

Fig. 4 shows the shape of the six intcrnal load-
ings. The X-directional imernal forces have the
same magnitude, the same line of action, but the
opposite direction. Therefore, an offset moment in
the Z-direction should be given at the second
manipulator in order to sustain equilibrium. The
Y -directional forces have the samc magnitude,
the same line of action, but the opposite direction.
The Z-directional forces have the same magni-
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X-direction Y -direction Z~-direction
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{d) Internal moment in the
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(e) Internal moment in the
Y ~direction
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(f) Internal moment in the
Z~direction

Fig. 4 Internal loading of a dual manipulator in 3-dimensional space

tude, the same line of action, but the opposite
sense.

In that case, the moment in the X-direction
should be applied at the first manipulator in
order to sustain equilibrium. The moments in the
X-, Y-, and Z-directions have the same magni-
tude, but the opposite direction, respectively.

Similar to the planar casc, the object is clamped
in the X- and Z- directions. Thus, this case has
one lincar internal loading, two clamped type
internal loadings, and three moment type internal
loadings.

2.2.3 Triple manipulator in planar domain

When three manipulators rigidly grasp a com-
mon object in the planar domain, the position
vectors is given as n=[—1 —1//3]7, n=]l
—1/ V3 1% and 7 =[0 2/ V3 ]". The

transformation matrix can be expressed as

| 00 1 00 1 00
G=| 0 10 0 10 0 10
Tt Yal =2 Vel — Vs ral

(34)

and F; of the 7-th manipulator can be expressed
as [fux foi mz}”, for i=12,3, Then the internal
loading matrix can be obtained as

Fig, 5 Triple manipulator in planar domain

" 0.62 0.08 —0.08 —0.383 —0.08 —0.08 —0.24 0 —0.08]
008 052 014 0.08 —0.19 0.14 —0.17 —0.33 0.14
—0.08 0.14 086 -0.08 —0.14 —0.14 0.17 0 —0.14
—0.38 008 —008 0.62 —0.08 —0.08 —024 0 —0.08

I-G*G=| —0.08 —0.19 —0.i14 —0.08 052 —0.14 0.17 —0.33 —0.14 (35)
—0.08 0.14 —0.14 —0.08 —0.14 086 0.17 0 —o0.14
—024 —0.17 0.16 024 017 0.17 048 0 0.17
¢ —-033 0O 0 -033 0 0 0.67 0
| —0.08 0.14 —0.14 —0.08 —0.14 —0.14 0.17 0 0.86 J
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(a) Internal force in the
X-direction

(d) Internal force in the
X-direction

{b) Internal force in the
Y -direction

(e) Internal ferce in the
Y -direction
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(¢) Internal moment in the
Z~direction

(f) Internal moment in the
Z~direction

Fig. 6 Shape of the basis of internal loading for triple manipulator in the planar domain

This matrix is a 9 by 9 square matrix whose
rank is 6. Therefore, by using the row-reduced
echelon method, the dimension of the internal
loading basis is 6. The six vectors consisting of
the basis can be obtained as

F= [fxlf,vl Ma1 fxafveMan fx3fy3mz3] T

[100-100000] (36)
[0100-12000] (37)
[00100—-1000]7 (38)
[000100—10173)7 (39)
[0000100 —11]7 (40)
[ooo00100 —1]7 (41)

Fig. 6(b), (d), and (c) show the internal load-
ings that come from the combination of the inter-
nal force and moment. If the internal force that
is symmetric to the referenced coordinate is exert-
ed on the (7;—7;) line, then the moment does not
occur. However, the internal forces are generally
coupled to internal moment. Fig. 6(c) and (f)
show that the internal moment independently oc-
curs because the moment is a free vector. Thus,
this triple manipulator has the internal loadings
of one linear type, three clamped types, and two
pure moment ypes.

2.2.4 Triple manipulator in spatial domain

When a robotic system consists of three mani-
pulators at three dimensional space, the number
of independent internal loading will be 12. Analy-
sis of the internal loading for the triple arm has
not been addressed so far because of the com-
plexity of the internal loading. When the position
vectors of the end-effector for the three mani-
pulators are given by n=[0 —1 0]7, =[0 ]
0]7, and ©=[—v3 0 0]". The G and F are
respectively given by

[EO0LoOLoO
G‘[_sl ES:LES 13] (42)
F=[F K K" (43)

then the internal loading matrix (J—G*G) can

be obtained as
Arm(3
- '“-...,\ ] | (3)
Armr(1]) -..’ & Fda

Fig. 7 Triple manipulator in spatial domain
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(a) Internal force in the {b) Internal force in the (c) Internal force in the
X-direction Y -direction Z-direction

‘f.

> ’N ~

\d) Internal moment in the (e) Internal moment in the (f] Internal moment in the
X-direction Y-direction Z~direction

Fig. 8 Shape of internal loading basis for triple manipulator in spatial domain

(052 0 0 0 —014—019—008 0 0 0 —014-033017 0 0 0 -—014]
—008 0 0 0 —008008 —038 0 0 O -008 O —024 0O O 0O ~—008
0 04 02 012 0 0 0 -0202 012 0 o0 0 -—0202 012 0
0 02 08 0 O 0O o0 -02-02 0 0 o0 0 0 02 0 O

0 012 0 08 O 0 0 012 0 -02 0 0 0 -023 0 -02 0
-014 0 0 0 08 014 -008 0 0 ¢ —-014 0 017 O O 0 014
-019 0 0 0 014 05 008 0 0 0 0f4 -033-017 0 O 0 014

-08 0 0 0 -008 008 062 O O O —008 0 —024 O O O —008
0 -012-02012 0 0 0 04 -02 012 0 0 0 -02-02012 0

0 02 -02 0 0 0 0 -0208 0 0 0 0 0 -02 0 0 (44)

0 012 0 -02 0O 0 0 o012 0 08 O 0 0 -023 0 —02 O
-014 0 0 0 -014014 008 0 0 0 08 o0 017 0 O 0 —0l4
-033 0 0 o 0 -033 ¢ o0 0 0 0 067 0 0 0 o0 0
017 ¢ 0 ¢ o7 —017-024 0 0 0 0I7 0 048 O 0O O 67

6 -02 0 -023 O 0 06 -02 0 -023 O ¢ 04 0 023 O

¢ 012 ¢ -02 0 0 0 012 0 02 0 0 —023 0 08 0

0

0 02 -02 0 0 0 0 -02-02 O 0 0 0 0 08 0 0
0

—0.14 0 0 6 -—014 014 -008 0 O 0 —014 0 017 0 0 0 086 ]

This matrix is a 18 by 18 squarc matrix whose [0001006000000000 —100]" (48)
rank is 12. Therefore, using row-reduced echelon

method, the basis of internal loading consists of [(00060100000000000—10]" (49)
12 vectors that can be obtained as

[1000000000—10000 —1]T  (45)
[0100000000000—1000 —1.03]7(46)
[00100000000000—111730]" (47) (0000000100000 —-10001.73]7 (52)

[00000100000000000 —1])7 (50

000000100000 —100001]7 (51)



1562

[00000000100000 —1 —11.730]7(53)
[000000000100000 —100]" (54)
[0000000000100000 —10]7 (55
[00000000000100000 —1]7 (56)

The trends are similar to the planar case. Internal
moments also independently happen. However,
internal forces are coupled to internal moments
that are called couple moment. Fig. 8 shows the
shape of the internal loading between the first and
third manipulator. The other internal loading can
be also visualized similarly.

2.3 General case

The above analysis can be extended to the
general case. The number of the internal loading
basis is 6 X (#-1) at the spatial motion, 3 X (n-1)
at the planar motion with # number of mani-
pulators.

3. Condition of no Internal Loading at
the Particular Solution

It has been argued whether the particular solu-
tion in the force resolution problem of multiple
robotic systems has some internal force or not.
Walker et al. (1989) suggested a weighted pseudo-
inverse solution to resolve this problem. How-
ever, we have shown that Walker’s algorithm has
not becen proven as shown in the sub section 2.2.
1. It will be shown that a weighted pseudo inverse
solution has the additional internal squeezing
force.

{Proposition)

The row space and the nulil space of Eq. (7) are
mutually orthogonal if and only if the weighting
maltrix is an identity matrix.

{proof>

Assume that the row space and the null space
are mutually orthogonal. Then, the inner product
of those will always satisfy

GV (I-GywG)=0 (57)

Eq. (57) can be expressed, in more detail, as

Jae Heon Chung, Byung-Ju Yi and Whee Kuk Kim

(GWGNYGW-T
—(GW'GT) TGWTW'GT(GW'GT) "' G=0

Assuming

(58)

wWITw'l=w"! (59)
then, Eq. (58) can be expressed as
(GW G TG(WT—-1)=0 (60)

If GW™'GT+0 in Eq. (60), then (W~"—1) must
be zero or G and (W~T—1I) should be ortho-
gonal. Both cases yield

w-T=I (61)
Taking transpose and inverse on both sides yields
W=I (62)

Eq. (62) also satisfies the initial assumption given
by Eq. (59).

Now, let’s assume that the weighting matrix is
given as an identity matrix. Then Eq. (58) can be
expressed as

(GGNTG— (GG TGGT(GGM G (63)
where, since GGT(GGT) =1
(GG "G—-(GGNTG=0 (64)

Thus, it is proven that row space and the null
space are mutually orthogonal.

As a conclusion, when the weighting matrix is
given as an identity matrix, the particular solution
does not have internal loading at the grasping
space. However, if the weighting matrix is given
arbitrarily, then the internal loading exists at the
grasping space. For instance, when the grasping
positions are given as n=[—1 0]7 and 7=
[1 0], and the weighting matrix is a 6 by 6
identity matrix. Table 2 shows that all six cases

A
< —p ¢ } P
.?N,v [ RS
9 T
Ami(2)

b Arm(1)
7, ()

Fig. 9 Planar motion
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Table 2 Load distribution for identity weighting

Case | Case 2 Casc 3
P [o11]7 f[oo1]7 (100]7
F|[0025025]7[0 —0.25 0.25)7| [0500]7
E[[0075025]"| [0025025]7 [0500])7
Case 4 Case 5 Case 6
P| [o10]7 [t10]” (to1)T
R| [0050]7 [0.5050]7 i[0.5 —0.250.25)7
E| [0050]7 [0.5050]" |[050.25025]7

Table 3 Load Distribution for Nonidentity
Weighting (planar case)

Case 1 Case 2 Case 3
P [o11]7 [o01]7 [to0])”
F |[-050505]7| [0005]7 [0.500]7
F | [050505]" | [0005]7 [0.500]7

Case 4 Case § Case 6
P (010]” [110]” [1o1]”
F | [-05050)7| [06050]7 | [05005]7
E | [05050] [(1050]" | [0.500.5])7

do not exhibit any internal loading for the given
operational load {P). Refer to Fig. 2 for three
types of internal loading in this example.

However, when the weighting matrix is given
as, which is an arbitrary nonidentity matrix

(000010
000001
100000
W= 010000 (65)
001000

[000100]

then the case | and 4 of Table 3 yield some
internal loading along the X-direction. Fig. 10
(a) and (b) show the casc of no internal loading.
Fig. 10(c) and (d) show the cases of the internal
loading.

Figure 11 shows a dual-arm opcrated in 3-di-
mensional space. The grasping position of the two
arms is given as 7=[—100]7 and 7»=[100]7,
and the weighting matrix is a 12 by 12 identity

."lrm{l) ] \ £ 1 Arm(2)
et
,Zl ﬂ,lﬁ/J I

0.75
(a) Case | of Table 2: P=[01 1]

0.25 0.25

025

£ 1 Am(2)
5
% A

e ;
//)0_25 }j J u.zs/j '

0.25
(b) Case 2 of Table 2: P=[001]7

Arm {.l )

r‘h'n;{i} | AL P 1 ."..r'm{.?‘.)
0.5 g¢—4 < ST 0.5

L /]
L k.
A us%/_
05 0.5 ' ~ 105

(c] Case | of Table 3: P=(01 1]’

_____ Al P | ;‘lmi(l}

o
9.5 4_1“'“——": ."—_—"f_p’n_ﬁ
0.5 0.5

(d) Case 4 of Table 3: P=[010]7

Fig. 10 Comparison of the internal loading of the
table land 2

Armi(1) Arm(2)

Fig. 11 Spatial motion by two manipulators

matrix. As shown in Table 4, this example has
no internal loading.

When we map the force and moment {rom the
grasping space to the opcrational space, Walker ct
al.(1989) suggested that the particular solution
has additional internal loading at the operational
space. Therefore, Walker proposed no squeczing
weighted pseudo-inverse that removes the inter-
nal loading at the operational space. However,
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when the weighting matrix

(W ) _|o I3
W—{ 0 WJ with W;—[Ia 0] (66)

Table 4 Loading Distribution in 3-Dimensional
Space with Identity Weighing
Case 1 Case 2
P [010000])7 [oor000]7
F [6050000]7 foooso000]”
15 [6050000]7 fooosoo00)”
Casc 3 Casc 4
P [010010]7 [ooiooi]”
F | [00502500250]7 |[0 —02505000.25]7
F ([005 —02500250]7) [00.2505000.25)7

Table 5 Load Distribution in 3-Dimensional Space
with Nonidentity Weighting

Case | Case 2

P [010000]7 fooi1000]"

F [_00.5 0000.5]" (00050 —050]7

F | [005000 —05]7 (00050050]7
Casc 3 Casc 4

‘l (010010]7 [00o100 ]

[005000.505]7
[0050005 —0.5]7

[00050 —050.5]7
[00050050.5]7

3= i~

025 1035

VETE 7,
» f_?n,;:ll/

0.5 ]

0.5

(¢) Case | of Table 5

Fig. 12 Comparison of internal loadings for two
cases

(d) Case 2 of Table 5

suggested by Walker is employed, it is found
again that the internal loading exists as shown in
Table 5. The Walker’s algorithm is incorrect. In
Fig. 12, we compare the case of internal loading
with that of no internal loading.

4. Internal Force Analysis
at the Three-Fingered
and Three-Legged Systems

The previous examples were for tightly or rig-
idly grasped case. Now, we will consider a special
interface between the grasped object and the mul-
tiple manipulators. We assume that each fingertip
makes a point contact offering friction force to the
object. Grasping space analysis is good for the
analysis of this type of problems. In this case, Eq.
(5) is transformed as

— 13 13 Ia 6x3m
G'[S, Sp s,,]ER (67)

The first term on the right-hand side of Eq. (7)
represents the manipulating force, and the second
term denotes grasping force or internal force.
Kumar et al. (1988) also defined those terms as an
equilibrating force and an interaction force, re-
spectively. The equilibrating forces are the forces
required to maintain cquilibrium against an ex-
ternal load, and the interaction force must have a
zero net resultant. The definition of the interac-
tion force is similar to the internal force. So, the
number of the internal forces or the interaction
force is 3Xn—6(3, 4] if and only if the contact
points are non co-linear. However, the interac-
tion forces exist on the (7;—7;) line, and the
internal forces also cxist in any direction at the
coplanarity of contact points.

Yoshikawa et al.(1987) defined the internal
loading by using three unit vectors given by

_nTn_ . non
In—nl" < In-nl

_.h~n
||1z—£1 ||

(4 €3 (68)

where ¢; is the unit vector directing from C; to
C.+1. Then, the internal forces can be constructed
by
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Fig. 13 Internal force

Fi=zes+2(—e)
E2=21§1+22(-§3) (69)
B=zata(—ea)

where z), 2, and z; are arbitrary real numbers.

The matrix form of the internal force can be
expressed as

E 1 0 —e e 2
FEl=l a 0 —a|=|z (70)
F -a e 0 2

and three internal forces form the closed triangle.

4.1 Three-fingered system

When a three-fingered system contacts a com-
mon object, the transformation matrix can be
expressed as

(L EB
G‘[s, S, Sz] (7

The position vectors of the contact point are =
[—1 =/3/30)7, n=[1 —/3/30]7, and rs=
[0 2/3/30]7, and the internal force matrix can

Fig. 14 Three-fingered system

be obtained as

I-G*'G
[ 0.58 0.14 0—042-0140-017 0 0]
0.14 042 0 0.4 —0080 —029 —0.330
0 0 0 0 00 0 0 0
—042 0.14 0 058 —0140-014 0 O

=| —0.14 —-0.08 0 —0.14 042 0 029 —0330 (72)

0 6 0 0 0 ¢ 0 0 0
=017 0290 —0.17 029 0 033 0 0

0 -0330 0 -—0330 0 0670

0 0 0 0 ¢ 0 0 0 0]

This matrix is a 9 by 9 square matrix whose rank
is 3. Therefore, the basis of internal force is 3.
Column 3, 6, and 9 of Eq. (72) have zero value.
This is because the plane of the contact points is
perpendicular to the Z-axis of the object coordi-
nate. By using row-reduced echelon method, the

basis of internal loading can be obtained as

[to00 —1.730 —11.730]7 (73)
0100100 —20]7 (74)
(0001 —1730 —1 1.73 0]7 (75)

Egs. (73) through (75) form a closed force trian-
gle. The interaction force can be obtained using
the concept of force equilibrium at the contact
point. From Eq. (70}, the z vectors corresponding
to the internal forces given in Bqs. (73) through
(75) can be obtained as

a=[—-201] (76)
2=[-2//3 =2//3 1/V3] 7
z=[—200] (78)

Thus, the reduced row echelon method can be
employed as a general approach to analyze the
interna! loading for general types of multiple
robotic systems.

4.2 Three-legged system

The concept of the internal force at the three-
legged system is the same as that of three-fingered
system, but the difference is the object being
grasped. The position vectors of the end-point
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Fig. 15 Three-legged system

of legs are n=[—2 —2/3/3 =317, n=[2
—2/3/3 —4]7, and 73=[0 4/3/3 —4]7, and
the internal force matrix can be obtained as

I-G*G
[ 054 013 -015 039 -013 002 -0.05 001 004 ]
013 039 —009 0.4 008 —0.02 —027 -0.32 0.4}
-0.15-009 005 008 004 -003 008 004 -003
=039 0.4 008 056 —0I5—0.12-017 001 004
=1-0.13 008 004 0.5 041 —002 028 -0.34 -0.02
0.7 -002-003 -0.12 -002 003 0 005 —00
—-015-027 008 -017 028 O 032 001 ~008
001 -032 004 001 034 005 —001 065 —0.09
004 001 003 004 002 -0.01 -0.08 —0.09 0.03

(79)

This matrix is a 9 by 9 square matrix whose rank
is 3. Therefore, the basis of internal force is 3, and
by using row-reduced echelon, the internal forces
can be obtained as

[10—0250 —1.73025 —1 1.73 0]7 (80)
(01 —01401 —0.140 —2 028]7 (81)
[0001 —1.730 —1 1.73 0]7 (82)

Note that Kumar et al.(1988) derived the condi-
tion for zero interaction force between legs. It is
described as

(Eml_Emz) '(11— z)
(Eml_Ems) ‘ (11"’1’3)
(_Emz—Ems) : (Zz—zs)

I3

(83)

Il
o o o

where Fpn; denotes the manipulating force at the
i-th leg. The internal force vectors satisfy the
condition for zero interaction force. Therefore,
the reduced row echelon method is accepted as a
general approach to analyze the internal loading
of multiple robotic systcms.

5. Conclusions

The internal loading can be defined as the
forces and moments that do not affect the motion
of the end-effecter. The basis of the internal load-
ing has 6 X (»-1) independent vectors. However,
there has been some confusion in using the con-
cept of internal loading in multiple robotic sys-
tems such as multiple arms, multi-fingered hands,
and walking machines. This paper aims at clari-
fying the physical meaning of internal loading by
using the grasping space based analysis. A reduc-
ed row echelon method is employed to analyze
the null space of multiple robotic systems. Firstly,
the condition of no internal loading at the grasp-
ing space is derived, and is met when the weight-
ing matrix is an identity matrix. Secondly, we
analyze the internal loadings and show the shapes
of the internal loading through various examples.
Finally, the internal forces for three-fingered and
three-legged systems are analyzed as special ex-
amples.

Acknowledgments

This study was supported by Grant No. 02-
PJI3-PG6- EV(04-0003 of the Ministry of Health
and Welfare, Republic of Korea.

References

Albert, T. E. and Soloway, D. 1., 1988, “Force
Control of a Multiple-Arm Robot System,”
IEEE Int. Conf. on Robotics and Automation,
pp. 1490~ 1496.

Cheng, F. T. and Orin, D. E., 1991, “Optimal
Force Distribution in Multiple Chain Robotics
Systems,” [EEE Trans. Systems, Man, Cyberne-
tics, Vol. 21, No. 1, pp. 13~24.

Choi, M. H. and Lee, B. H., 1995, “A Real
Time Optimal Load Distribution for Multiple
Cooperating Robots,” IEEE Int. Conf. on Robo-
tics and Automation, pp. 1211~1216.

Doty, K. L. et al,, 1993, “A Theory of Gener-
alized lnverse Applied to Robotics,” The in-
ternational Journal of Robotics Research, Vol. 12,



Analysis of Internal Loading at Multiple Robotic Systems

No. 1.

Joh, J. and Lipkin, H., 1991, “Lagrangian
Wrench Distribution for Cooperating Robotic
Mechanisms,” IEEE Int. Conf. on Robotics and
Automation, pp. 224~229.

Kerr, J. and Roth, B., 1986, “Analysis of
Multifingered Hands,” The international Journal
of Robotics Research, Vol. 4, No. 4, pp. 3~17.

Kumar, V. and Waldron, K., 1988, “Force
Distribution in Closed Kinemati¢c Chains,” IEEE
Journal of Robotics and Automation, Vol. 4, No.
6, pp. 657~664.

Li, J. et al,, 2003, “On Computing Three-Fin-
get Force-Closure Grasps of 2-D and 3-D Ob-
jects,” IEEE Trans. on Robotics and Automation,
Vol. 19, No. 1, pp. 155~161.

Nahon, M. and Angeles, J., 1992, “Minimi-
zation of Power Losses in Cooperating Mani-
pulators,” Journal of Dynamic Systems, Mea-
surement, and Control, Vol. 114, pp. 213~219.

Nakamura, Y. et al., 1987, “Mechanics of Coor-
dinative Manipulation by Multiple Robotic Mech-
anisms,” JEEE Int. Conf. on Robotics and Au-

1567

tomation, pp. 991~998.

Uchiyama, M. and Dauchez, P., 1988, “A Sym-
metric Hybrid Position/Force Control Scheme
for the Coordination of Two Robots,” JIEEE Int,
Conf. on Robotics and Automation, pp. 350~ 356.

Walker, 1. D. et al, 1989, “Internal Object
Loading for Multiple Cooperating Robot mani-
pulators,” IEEE Int. Conf. on Robotics and Au-
tomation, pp. 606~611.

Yoshikawa, T. and Nagai, K., 1987, “Mani-
pulating and Grasping Forces in Manipulation
by Multi-fingered Hands,” IEEE Inl Conf. on
Robotics and Automation, pp. 1998 ~2004.

Yoshikawa, T., 1999, “Virtual Truss Model for
Characterization of Internal Forces for Multiple
Finger Grasps,” IEEE Trans. on Robotics and
Automation, Vol. 15, No. 5, pp. 941~947,

Zuo, Bing~Ran and Qian, Wen~Han, 1999,
“On the Equivalence of Internal and Interaction
Forces in Multifingered Grasping,” IEEE Trans.
on Robotics and Automation, Vol. 15, No.S5,
pp. 934~941.





